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Evidence for Gondwanan vicariance in an
ancient clade of gecko lizards

Tony Gamble1*, Aaron M. Bauer2, Eli Greenbaum2 and Todd R. Jackman2

INTRODUCTION

Vicariance hypotheses of Gondwanan fragmentation have been

the prevailing explanation for the distributions of plant and

animal taxa in the Southern Hemisphere since the widespread

acceptance of plate tectonics in the late, 1960s (Bauer, 1993;

Sanmartı́n & Ronquist, 2004). Recently, several molecular

studies comparing the timing of cladogenic and vicariant
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ABSTRACT

Aim Geckos (Reptilia: Squamata), due to their great age and global distribution,

are excellent candidates to test hypotheses of Gondwanan vicariance against post-

Gondwanan dispersal. Our aims are: to generate a phylogeny of the sphaerodactyl

geckos and their closest relatives; evaluate previous phylogenetic hypotheses of

the sphaerodactyl geckos with regard to the other major gecko lineages; and to use

divergence date estimates to inform a biogeographical scenario regarding

Gondwanan relationships and assess the roles of vicariance and dispersal in

shaping the current distributions of the New World sphaerodactyl geckos and

their closest Old World relatives.

Location Africa, Asia, Europe, South America, Atlantic Ocean.

Methods We used parsimony and partitioned Bayesian methods to analyse data

from five nuclear genes to generate a phylogeny for the New World sphaerodactyl

geckos and their close Old World relatives. We used dispersal–vicariance analysis

to determine ancestral area relationships among clades, and divergence times

were estimated from the phylogeny using nonparametric rate smoothing.

Results We recovered a monophyletic group containing the New World

sphaerodactyl genera, Coleodactylus, Gonatodes, Lepidoblepharis, Pseudogonatodes

and Sphaerodactylus, and the Old World Gekkotan genera Aristelliger, Euleptes,

Quedenfeldtia, Pristurus, Saurodactylus and Teratoscincus. The dispersal–

vicariance analysis indicated that the ancestral area for this clade was North

Africa and surrounding regions. The divergence between the New World

spaherodactyl geckos and their closest Old World relative was estimated to have

occurred c. 96 Myr bp.

Main conclusions Here we provide the first molecular genetic phylogenetic

hypothesis of the New World sphaerodactyl geckos and their closest Old World

relatives. A combination of divergence date estimates and dispersal–vicariance

analysis informed a biogeographical scenario indicating that the split between the

sphaerodactyl geckos and their African relatives coincided with the Africa/South

America split and the opening of the Atlantic Ocean. We resurrect the family

name Sphaerodactylidae to represent the expanded sphaerodactyl clade.
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events have shown that oceanic dispersal may be more

common than once thought by many biogeographers because

the estimated time of divergence between focal taxa occurred

after the vicariant event (Lundberg, 1993; Raxworthy et al.,

2002; Nagy et al., 2003; Vences et al., 2004; Whiting et al.,

2006). The recognition that oceanic dispersal may be the most

important factor in the distributions of many animal taxa has

been called a ‘counter-revolution’ in biogeography (de Que-

iroz, 2005) and has caused many biogeographers to rethink

some long-held hypotheses. The same phylogenetic tools that

have allowed biogeographers to reject Gondwanan vicariance

for many taxonomic groups can conversely reject dispersalist

hypotheses in favour of vicariance. The combination of robust,

multi-gene phylogenies, relaxed dating techniques, and event-

based methods of biogeographical reconstruction should not

be seen as favouring one paradigm over another (preferring

dispersal over vicariance), but should instead be viewed as a

major step forward in biogeographical research as a whole.

The distribution of gecko lizards on continents in the

southern Hemisphere is presumed to have been heavily

influenced by Gondwanan vicariance (Cracraft, 1974; Bauer,

1990, 1993) and the ancient origin of geckos 165–180 Myr bp

(Kluge, 1987) makes this a plausible scenario. While overseas

dispersal is likely for some genera of New World geckos

(Kluge, 1969; Carranza et al., 2000), the majority of South

American gecko species are thought to be closely related to

African taxa, with distributions shaped by the opening of the

Atlantic Ocean 100–120 Myr bp (Bauer, 1993; Hay et al.,

1999). There are few well resolved phylogenies containing both

New World and Old World gecko genera, which has made

testing hypotheses of Gondwanan vicariance impossible. The

matter has been complicated by the fact that some lineages of

geckos are perhaps the most capable overseas dispersalists

among non-volant, terrestrial vertebrates, which best explains

their widespread distribution on volcanic and coral islands.

Geckos possess two main characteristics that make them

amenable to overseas dispersal: eggs that are resistant to

desiccation and temporary immersion in sea water (Brown &

Alcala, 1957); and a well developed digital adhesive mechanism

(Russell, 2002; Vanhooydonck et al., 2005) that allows indi-

viduals to hold tightly to flotsam. Overseas dispersal is the best

explanation for the distribution of geckos in the Pacific Ocean

(Moritz et al., 1993), Indian Ocean (Austin et al., 2004) and

Caribbean (Hedges, 1996). Trans-Atlantic dispersal from

Africa to the West Indies and South America is also strongly

supported by molecular phylogenetic data in the gecko genera

Tarentola and Hemidactylus (Carranza et al., 2000; Carranza &

Arnold, 2006).

The Sphaerodactylinae, a monophyletic subfamily endemic

to the New World, seems to be closely related to the African

and Arabian genus Pristurus (Kluge, 1987, 1995), and offers the

only phylogenetically informed hypothesis of trans-Atlantic

relationships above the generic level in geckos (Bauer, 1993).

The subfamily Sphaerodactylinae (sensu Han et al., 2004),

which we refer to hereafter as ‘sphaerodactyl geckos’, comprise

145 species in five genera, Sphaerodactylus, Coleodactylus,

Lepidoblepharis, Pseudogonatodes and Gonatodes, all of which

are confined to the Western Hemisphere. All species are small

– Sphaerodactylus ariasae is the smallest terrestrial amniote

(Hedges & Thomas, 2001) – and most are diurnal (Werner,

1969; Vitt et al., 2005). The sphaerodactyl geckos posses many

morphological synapomorphies, including a short or absent

maxillary process of the palatine, a long, deep choanal canal

(Kluge, 1995), a reduced hypoischium (Noble, 1921; Kluge,

1995), and lack of beta generation glands (Kluge, 1983, 1995).

Underwood (1954) was the first to place the five genera of

sphaerodactyl geckos into their own family, the Sphaerodac-

tylidae. Kluge (1967) maintained this grouping, although he

changed the taxonomic rank to subfamily and hypothesized

that the Sphaerodactylinae were the sister clade to the

Gekkoninae. Kluge (1987) offered a revised hypothesis using

a cladistic analysis of 44 morphological characters and found

strong affinities between the sphaerodactyl geckos and the

North African genus Pristurus. Kluge’s (1995) cladistic analysis

of spaherodactyl geckos reaffirmed the existence of the

sphaerodactyl + Pristurus clade and utilized as outgroups the

gekkonid genera Cnemaspis, Narudasia, Saurodactylus and

Quedenfeldtia, which were assumed to be closely related on the

basis of the absence of cloacal sacs and bones (Arnold, 1990a,b,

1993; Kluge & Nussbaum, 1995). Molecular phylogenetic

analyses have recovered sphaerodactyl exemplars as sister taxa

to the remaining Gekkonidae either by themselves (Han et al.,

2004) or with the central Asian genus Teratoscincus (Townsend

et al., 2004). While the monophyly of the sphaerodactyl geckos

has never been in doubt, its placement with relation to the

remaining Gekkonidae is still in question.

Geckos, owing to their small size and light build, are poorly

represented in the fossil record (Evans, 2003), and the

fragmentary nature of most existing gekkotan fossils makes

identification below the family level all but impossible. Several

Jurassic fossils, such as Ardeosaurus, Bavarisaurus and Eichsta-

ettisaurus, are of questionable gekkotan affinity (Estes, 1983;

Kluge, 1987; Evans, 2003; Conrad & Norell, 2006). Cretaceous

fossils such as Hoburogecko and Gobekko are most certainly

geckos, but their relationships to fossil and extant species are

unknown (Alifanov, 1989; Borsuk-Bialynicka, 1990; Conrad &

Norell, 2006). Similarly, the Eocene Rhodanogekko, Cad-

urcogekko, and the amber-preserved Yantarogekko remain

incertae sedis (Hoffstetter, 1946; Bauer et al., 2004). There are

only a handful of fossil geckos that have been assigned to

extant clades and can be used in a calibrated dating analysis,

and all are from the Miocene. They are: Pygopus hortulanus

from northern Australia, several species of Euleptes from

Europe, and several amber-preserved Sphaerodactylus from the

Dominican Republic. The existence of fossil Sphaerodactylus

makes the sphaerodactyl clade an ideal group among geckos

for dating techniques that utilize fossil calibrations.

Here we provide the first molecular genetic phylogenetic

hypothesis of the sphaerodactyl geckos. Our objectives are to

generate a phylogeny of the Sphaerodactyl geckos and their

closest relatives, evaluate previous phylogenetic hypotheses of

the sphaerodactyl geckos with regard to the other major gecko
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lineages, and use divergence date estimates to inform a

biogeographical scenario regarding the possible Gondwanan

relationships between the New World sphaerodactyl geckos

and their closest Old World relatives. Specifically, we wish to

test the hypothesis that the distribution of sphaerodactyl

geckos was influenced by Gondwanan vicariance. Evidence in

support of a vicariance hypothesis would be an estimated

divergence date of the sphaerodactyl geckos from their closest

Old World relative c. 100 Myr bp or greater. An estimated

divergence date substantially less than 100 Myr bp would lead

us to reject the vicariance hypothesis and a dispersal hypothesis

would be favoured by default.

MATERIALS AND METHODS

Taxon sampling and DNA sequencing

We sampled representatives of each of the five genera of

sphaerodactyl geckos, as well as genera previously hypothesized

to be closely related to them – Pristurus, Cnemaspis, Narudasia,

Saurodactylus and Quedenfeldtia (Kluge, 1995). Representative

taxa from the other major gekkotan clades were also included.

The basal position of geckos in relation to other squamates

(Townsend et al., 2004; Vidal & Hedges, 2005) suggested that

any non-gekkotan squamates would be appropriate outgroups.

The skink, Trachydosaurus rugosus, and the amphisbaenid,

Rhineura floridana, were therefore included as outgroups.

Locality data, museum catalogue numbers or field numbers,

and GenBank accession numbers for sampled taxa are listed in

Table 1.

Genomic DNA was extracted from muscle, liver or tail clips

using the DNeasy Blood and Tissue kit (Qiagen, Valencia, CA,

USA). PCR was used to amplify portions of five nuclear

protein-coding genes, recombination-activating gene 1

(RAG1), recombination-activating gene 2 (RAG2), oocyte-

maturation factor MOS (c-mos), acetylcholinergic receptor M4

(acm4) and phosducin (PDC). Primers used are listed in

Table 2. PCR products were purified using Exonuclease I and

Shrimp Alkaline Phosphatase (Hanke & Wink, 1994), the

QIAquick PCR Purification kit (Qiagen), or AMPure magnetic

bead solution (Agencourt Bioscience, Beverly, MA, USA)

following the manufacturer’s recommendations. Sequencing

was performed using Big Dye (Perkin Elmer, Waltham, MA,

USA) or DYEnamicET Dye Terminator Kit (GE Healthcare,

Fairfield, CT, USA) terminator cycle sequencing with CleanSeq

magnetic bead solution purification (Agencourt Bioscience) on

an ABI 3730 · l at the Advanced Genetic Analysis Center,

University of Minnesota, MN, USA or an ABI 3700 automated

sequencer at Villanova University, PA, USA. Sequences were

checked for accuracy by incorporating negative controls and

sequencing complementary strands and assembled using

sequencher ver. 4.2 (Gene Codes, Ann Arbor, MI, USA).

Sequences were aligned using t-coffee (Notredame et al.,

2000). Although this method is computationally complex and

time-consuming, it minimizes the ‘local minimum’ errors of

clustal (e.g. misaligned base pairs or whole domains) by

simultaneously finding the multiple alignment that is most

consistent with a set of pairwise alignments between the

sequences. This is accomplished through computations of

global and pairwise ‘libraries’ that allow information from all

of the sequences to be considered during each alignment step,

not just those being aligned in one particular step (Notredame

et al., 2000; Higgins, 2003). All sequences were translated to

amino acids using MacClade ver. 4.08 (Maddison & Madd-

ison, 1992) to confirm alignment and gap placement.

Phylogenetic analyses

Maximum parsimony analysis was conducted using heuristic

search algorithms in paup* ver. 4.0b10 (Swofford, 2002) with

equally weighted and unordered characters and with tree

bisection–reconnection branch swapping. Nonparametric

bootstrapping (Felsenstein, 1985) using 100 pseudoreplicates

was performed to assess nodal support.

Bayesian inference phylogenetic analyses were conducted

using MrBayes ver. 3.1.2 (Huelsenbeck & Ronquist, 2001). All

analyses began with a random starting tree, were run for

2,000,000 generations and were sampled every 100 generations.

Convergence was checked by importing the trace files (p files)

from the MrBayes output to the computer program tracer

ver. 1.3 (http://beast.bio.ed.ac.uk), which plots the likelihood

values against generation number. ‘Burn in’ trees (2000) were

discarded and the remaining samples were used to estimate the

posterior probability values, branch lengths and topology. The

Akaike information criterion (AIC) has been shown to have

many advantages over the likelihood ratio test in selecting the

best-fit model of nucleotide substitution (Posada & Buckley,

2004), and we used the AIC as implemented in MrModeltest

ver. 2.2 (Nylander, 2004) to estimate the best-fit model of

nucleotide substitution for each data partition.

Combining data sets, even heterogeneous data sets, into a

single phylogenetic analysis can often increase phylogenetic

accuracy (Kluge, 1989; Rokas et al., 2003). That said, it is

important to find the best model for each subset of data to

minimize systematic error (Bull et al., 1993; Wilgenbusch & de

Queiroz, 2000; Lemmon & Moriarty, 2004; Brandley et al.,

2005). Proper phylogenetic analysis of partitioned data should

fit an appropriate model of molecular evolution to each subset

of the larger data set. The subset of data can be based on data

type (morphological or molecular data), gene function (pro-

tein-coding or ribosomal genes), genomic affiliation (nuclear

or organelle genome), or some structural or positional

characteristic (codon position, intron or exon, or, in the case

of ribosomal genes, secondary structure). Some method of

evaluating alternative partitioning strategies should be used to

ensure that the model is not over- or under-parameterized. We

used Bayes factors to determine the most appropriate strategy

for partitioning the data. Bayes factors are a way of summa-

rizing the evidence provided by the data for one hypothesis,

described by a model, over another hypothesis (Kass & Raftery,

1995). Bayes factors, like frequentist statistics, can reject one

hypothesis over another but, unlike traditional hypothesis

T. Gamble et al.
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Table 1 Details of material examined.

Species Specimen ID Locality

GenBank accession numbers

RAG1 RAG2 c-mos ACM4 PDC

Eublepharis macularius TG 00081 Pakistan – EF534942 EF534900 EF534857 –

Eublepharis macularius JS2 Pakistan EF534776 – – – EF534816

Coleonyx variegatus CAS 205334 California, USA EF534777 EF534943 EF534901 EF534858 EF534817

Rhacodactylus ciliatus TG 00080 New Caledonia – EF534944 EF534902 EF534859 –

Rhacodactylus ciliatus AMS R 146595 Rivière Bleue, New Caledonia EF534778 – – – EF534818

Oedura marmorata AMS 143861 Queensland, Australia EF534779 EF534945 EF534903 EF534860 EF534819

Nephrurus milii AMB 499 Western Australia, Australia EF534780 EF534946 EF534904 EF534861 EF534820

Carphodactylus laevis AMS 143258 Queensland, Australia EF534781 EF534947 EF534905 EF534862 EF534821

Lialis burtonis TG 00078 Irian Jaya, Indonesia EF534782 EF534948 EF534906 EF534863 EF534822

Pygopus nigriceps AMB 53 Northern Territory, Australia EF534783 EF534949 EF534907 EF534864 EF534823

Pseudogonatodes guianensis KU 222142 Loreto, Peru EF534784 EF534950 EF534908 EF534865 EF534824

Sphaerodactylus roosevelti CAS 198428 Bahia de la Ballena, Puerto Rico EF534785 EF534951 EF534909 EF534866 EF534825

Sphaerodactylus ocoae CAS 198444 nr Santo Domingo,

Dominican Republic

EF534786 EF534952 EF534910 EF534867 EF534826

Sphaeodactylus nigropunctatus FLMNH 144010 Florida, USA – EF534953 EF534911 EF534868 EF534827

Sphaerodactylus elegans YPM 14795 Florida, USA EF534787 EF534954 EF534912 EF534869 EF534828

Sphaerodactylus torrei JB 34 Cuba EF534788 EF534955 EF534913 EF534870 EF534829

Lepidoblepharis sp. KU 218367 Manabi, Ecuador EF534789 EF534956 EF534914 EF534871 EF534830

Lepidoblepharis xanthostigma MVZ 171438 Limon, Costa Rica EF534790 EF534957 EF534915 EF534872 EF534831

Coleodactylus septentrionalis LSUMZ H-12351 Roraima, Brazil EF534791 EF534958 EF534916 EF534873 EF534832

Coleodactylus brachystoma MZUSP 92569 Piauı́, Brazil EF534792 EF534959 EF534917 EF534874 EF534833

Gonatodes daudinii JB 38 Union, St Vincent and

Grenadines

EF534793 EF534960 EF534918 EF534875 EF534834

Gonatodes annularis ROM 22961 Guyana – EF534961 EF534919 EF534876 –

Gonatodes annularis No ID French Guiana EF534794 – – – EF534835

Gonatodes caudiscutatus KU 218359 Limon, Ecuador EF534795 EF534962 EF534920 EF534877 EF534836

Gonatodes hasemani UNIBAN 1649 Rondônia, Brazil – EF534963 EF534921 EF534878 EF534837

Gonatodes humeralis MF 19492 Ecuador EF534796 EF534964 EF534922 EF534879 EF534838

Gonatodes albogularis MVZ 204073 Limon, Costa Rica EF534797 – – – EF534839

Gonatodes albogularis KU 289808 San Salvador, El Salvador – EF534965 EF534923 EF534880 –

Gonatodes sp. BPN 1303 Imbaimadai, Guyana EF534798 EF534966 EF534924 EF534881 EF534840

Teratoscincus roborowskii TG 00070 China EF534799 EF534967 EF534925 EF534882 EF534841

Teratoscincus microlepis TG 00074 Pakistan EF534800 EF534968 EF534926 EF534883 EF534842

Teratoscincus scincus JFBM 14252 Turkmenistan – EF534969 EF534927 EF534884 –

Teratoscincus keyserlingii CAS 228808 Yazd Province, Iran EF534801 – – – EF534843

Saurodactylus brosseti TG 00082 Morocco EF534802 EF534970 EF534928 EF534885 EF534844

Pristurus carteri TG 00083 Yemen EF534803 EF534971 EF534929 EF534886 EF534845

Quedenfeldtia trachyblephara MVZ 178121 Oukaimeden, Morocco EF534804 EF534972 EF534930 EF534887 EF534846

Aristelliger lar JB 01 Dominican Republic EF534805 EF534973 EF534931 EF534888 EF534847

Euleptes europaea No number Liguria, Italy EF534806 EF534974 EF534932 EF534889 EF534848

Phyllodactylus xanti ROM 38490 Baja California Sur, Mexico EF534807 EF534975 EF534933 EF534890 EF534849

Narudasia festiva AMB 3243 Narudas, Namibia EF534808 EF534976 EF534934 EF534891 EF534850

Cnemaspis limi LLG 6267 Pulau Tioman, Malaysia EF534809 EF534977 EF534935 EF534892 EF534851

Rhoptropus boultoni CAS 214713 Twyfelfontein, Namibia EF534810 EF534978 EF534936 EF534893 EF534852

Phelsuma madagascariensis FG/MV 2002.797 Manongarivo, Madagascar EF534811 EF534979 EF534937 EF534894 AB081507

Lepidodactylus lugubris AMB 4111 Kirimati, Kiribati EF534812 EF534980 EF534938 EF534895 EF534853

Gekko gecko No ID unknown EF534813 – – – EF534854

Gekko gecko TG 00079 Indonesia – EF534981 EF534939 EF534896 –

Hemidactylus frenatus TG 00088 Indonesia – EF534982 EF534940 EF534897 –

Hemidactylus frenatus AMB 7411 Pidenipitiya, Sri Lanka EF534814 – – – EF534855

Trachydosaurus rugosus JFBM 13685 New South Wales, Australia EF534815 EF534983 EF534941 EF534898 EF534856

Rhineura floridana FLMNH 141814 Florida, USA AY662618 DQ119631 AY487347 EF534899 –

Museum abbreviations follow Leviton et al. (1985) except as follows: AMB, Aaron M. Bauer; TG, Tony Gamble; JB, Jon Boone; BPN, Brice Noonan;

FG/MV, Frank Glaw/Miguel Vences; LLG, L. Lee Grismer; MF, Mike Forstner; JS, Jay Sommers; UNIBAN, Universidade Bandeirantes de São Paulo.
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testing, where the focus is on rejecting the null hypothesis,

Bayes factors can also provide evidence in support of a

hypothesis (Kass & Raftery, 1995). Bayes factors were com-

puted as the difference between the harmonic mean likelihoods

of the more complex partitioning strategy (T0) and the simpler

portioning strategy (T1) (Nylander et al., 2004; Brandley et al.,

2005). We considered hypotheses with 2 ln Bayes factors with a

value > 10 as very strongly supported (Kass & Raftery, 1995).

Four different data-partitioning strategies were examined: all

data combined (one partition), partitioned by gene (five

partitions), partitioned by codon across the entire data set

(three partitions), and partitioned by codon for each gene

individually (15 partitions).

Dating phylogenies

The Bayesian phylogeny was tested for departure from a

molecular clock. The Bayes tree using the best-fit partitioning

strategy was constrained to evolve in a clock-like manner in

MrBayes and compared with the unconstrained tree using

Bayes factors.

Absolute ages of nodes can be estimated directly if a

phylogeny is clock-like, but non-clock-like phylogenies require

a relaxed clock approach to dating nodes. We estimated

divergence times by using nonparametric rate smoothing

(Sanderson, 1997) with the Powell algorithm and a cross-

validation analysis as implemented in the program r8s

(Sanderson, 2003). Sampling confidence intervals for inferred

divergences were obtained by reanalysing 100 bootstrap repli-

cates of the complete data set as described in the r8s manual.

Several calibration points were used in the r8s analysis. The

fossils Euleptes sp. (Mueller & Moedden, 2001) and Euleptes

gallica (Mueller, 2001) were used to constrain the node

containing Euleptes and its sister clade to a minimum of

22.5 Myr bp (Agustı́ et al., 2001). The amber-preserved

Sphaerodactylus sp. (Kluge, 1995) and Sphaerodactylus dommeli

(Böhme, 1984) were used to constrain the node containing

Sphaerodactylus elegans and its sister clade to a minimum of

23 Myr bp (Grimaldi, 1995).

Two nodes were fixed using biogeographical data. First was

the Teratoscincus scincus–Teratoscincus roborowskii split (Macey

et al., 1999) caused by the Tien Shan–Pamir uplift 10 Myr BP

(Tapponier et al., 1981; Abdrakhmatov et al., 1996). Second

was the split between Teratoscincus microlepis and the

remaining Teratoscincus species (Macey et al., 2005) fixed at

20 Myr bp with the rise of the Hindu Kush (Searle, 1991).

Hypothesis testing

Several prior phylogenetic analyses have included the sphaero-

dactyl clade and related taxa. We used Bayes factors, as

described above, to evaluate four of these alternative topolog-

ical hypotheses (Fig. 1). Constrained trees were generated in

MrBayes under the best-fit partition strategy and the same

parameters as stated previously. The first alternative hypothesis

(H1) tested whether the genus Pristurus was the sister group to

the sphaerodactyl clade (Kluge, 1987, 1995). The second

alternative hypothesis (H2) tested the phylogenetic position of

the genus Teratoscincus. Kluge (1987) suggested that Terato-

scincus was the sister group to the remaining Gekkonidae, and

erected the subfamily Teratoscincinae to reflect this relation-

ship. The third alternative hypothesis (H3) examined the

relationship of the genus Gonatodes in relation to the

remaining members of the sphaerodactyl clade. Several authors

have suggested that Gonatodes is the most basal member of the

sphaerodactyl clade due to the lack of an ungual sheath, a

Table 2 Primers used in this study.
Primer name Primer sequence (5¢–3¢) Source

RAG1

G396 TCTGAATGGAAATTCAAGCTGTT Groth & Barrowclough (1999)

G397 AAAGGTGGCCGACCGAGGCAGCATC Groth & Barrowclough (1999)

F700 GGAGACATGGACACAATCCATCCTAC Bauer et al. (2007)

R700 TTTGTACTGAGATGGATCTTTTTGCA Bauer et al. (2007)

RAG2

EM1-F TGGAACAGAGTGATYGACTGCAT This study

EM1-R ATTTCCCATATCAYTCCCAAACC This study

PY1-F CCCTGAGTTTGGATGCTGTACTT This study

PY1-R AACTGCCTRTTGTCCCCTGGTAT This study

c-mos

G73 GCGGTAAAGCAGGTGAAGAAA Saint et al. (1998)

G74 TGAGCATCCAAAGTCTCCAATC Saint et al. (1998)

FU-F TTTGGTTCKGTCTACAAGGCTAC This study

FU-R AGGGAACATCCAAAGTCTCCAAT This study

ACM4

tg-F CAAGCCTGAGAGCAARAAGG This study

tg-R ACYTGACTCCTGGCAATGCT This study

PDC

PHOF2 AGATGAGCATGCAGGAGTATGA Bauer et al. (2007)

PHOR1 TCCACATCCACAGCAAAAAACTCCT Bauer et al. (2007)

T. Gamble et al.
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series of scales that cover the claw on the digits of sphaero-

dactyl geckos (Vanzolini, 1968; Russell, 1972; Kluge, 1995).

The fourth alternative hypothesis (H4) looked at the relation-

ship between the sphaerodactyl clade and several genera that

have been hypothesized as closely related and that were used

by Kluge (1995) as outgroups. These allied genera included

the previously mentioned Pristurus (Kluge, 1987, 1995). We

also included the North African genera Quedenfeldtia and

Saurodactylus and the Southern African genus Narudasia,

which, along with Pristurus and the sphaerodactyl clade, lack

cloacal bones and sacs (Kluge, 1982; Kluge & Nussbaum,

1995). Finally, we included the genus Cnemapsis, which

occurs in central and east Africa, India, Sri Lanka and

Southeast Asia. Cnemaspis was at one time synonymized with

the sphaerodactyl genus Gonatodes (Boulenger, 1885), and

Russell (1972) asserted that the two genera were closely

related.

Biogeography

We examined the biogeography of the sphaerodactyl geckos

and their closest relatives using dispersal/vicariance analysis

(diva ver. 1.1; Ronquist, 1996, 1997). diva assigns a cost to

possible biogeographical events such as vicariance (cost = 0),

dispersal (cost = 1) and extinction (cost = 1), and optimizes

the area distributions on a phylogeny. Because diva requires

fully bifurcated trees, we ran analyses on all possible fully

bifurcated trees individually and summarized the results.

Species were placed in one of three biogeographical areas:

the sphaerodactyl geckos and Aristelliger in the Western

Hemisphere; Quedenfeldtia, Pristurus, Euleptes and Saurodacty-

lus in an area representing North Africa, the Mediterranean

region and the Arabian Peninsula; and Teratoscincus in central

and south Asia.

There are limitations surrounding diva analyses, such as

decreased reliability in ancestral area reconstructions as you

reach the root of the tree, and the general trend to find

widespread ancestors (Sanmartı́n, 2003) and we are aware

there are many other methods of analysing species distribu-

tions (reviewed by Posadas et al., 2006). Given our data, using

a method that excluded phylogenetic information or either

vicariance or dispersal would be biologically unrealistic. Event-

based analyses, such as diva, which are modelled on biogeo-

graphical processes such as vicariance, dispersal and extinction,

require no a posteriori explanations and have been shown to be

biologically reasonable under a variety of circumstances (Zink

et al., 2000; Sanmartı́n et al., 2001; Xiang & Soltis, 2001; Wiens

et al., 2006a).

RESULTS

Phylogenetic analyses

We obtained sequence data for all taxa and genes except PDC

for the amphisbaenid outgroup R. floridana and RAG1 for

Sphaerodactylus nigropunctatus and Gonatodes hasemani. Post

hoc identification of the Teratoscincus specimen CAS 228808

indicated that it was T. keyserlingii, resulting in a chimeric

sequence for what we have labelled T. scincus on our

phylogenies. This should not affect the results presented here,

given that T. scincus and T. keyserlingii are sister species (Macey

et al., 2004) and that phylogenetic and molecular dating

methods appear to retain their accuracy when chimeric

sequences are used (Scally et al., 2002; Van Rheede et al.,

2006). There were 2637 characters, which consisted of 1502

variable sites, and 1045 parsimony-informative characters.

Sequence length and model parameters for each partition are

listed in Table 3. While sequence alignment was unambiguous,

there were insertion/deletion (indel) events in several genes

(summarized in Table 4). Some of the indel events for the

c-mos and RAG1 genes have been commented on by others

(Han et al., 2004; Townsend et al., 2004), but additional, novel

indel events are reported here for the first time from newly

sequenced taxa. The 12-bp deletion in c-mos in Gonatodes

annularis, Gonatodes hasemani, and Gonatodes sp. is of

particular interest, as it appears to be a synapomorphy for

that clade within the genus Gonatodes.

Partitioning data greatly improved harmonic mean likeli-

hood scores, and Bayes factors showed clear differences

between the different partitioning strategies (Table 5). Parti-

tions that involved codon position provided the greatest

improvement of likelihood scores, and the best-fit partition-

ing strategy divided the data by gene and codon. Tree

topologies across the different partitioning strategies were

consistent with only minor differences occurring at poorly

supported nodes.

The maximum parsimony analysis produced two equally

parsimonious trees (tree length = 4365). Parsimony trees were

consistent with the partitioned Bayesian analysis. Topological

variation within the ingroups occurred only at poorly

supported nodes. Overall, clades with strong bootstrap support

also had significant Bayesian posterior probabilities.

Pristurus

Sphaerodactlinae

Gekkonini

Kluge 1995Kluge 1987

Coleodactylus
Sphaerodactylus
Lepidoblepharis

Quedenfeldtia

Pseudogonatodes

Narudasia

Pristurus

Cnemaspis

Gonatodes

Saurodactylus

Teratoscincus

“Ptyodactylini”

H1

H2

H3

H4

Figure 1 Previous phylogenetic hypotheses

of Gekkotan lizards with special emphasis on

the Sphaerodactylinae and allied taxa. Mod-

ified from Kluge (1987, 1995). Alternative

phylogenetic hypotheses tested in this paper

are indicated with arrows.
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The monophyly of the Gekkota was well supported in

relation to the outgroups (Fig. 2). The placement of the

Eublepharidae as sister to the Gekkonidae and the basal

position of the Diplodactylidae/Carphodactylidae/Pygopodi-

dae are consistent with other recent molecular gekkotan

phylogenies (Donnellan et al., 1999; Han et al., 2004; Town-

send et al., 2004). A well supported clade containing the

sphaerodactyl geckos Saurodactylus, Teratoscincus, Quedenfeld-

tia, Aristelliger, Euleptes and Pristurus was the sister group to

the remaining Gekkonidae. Within this novel clade there was a

polytomy, with one branch leading to the genus Pristurus, one

branch leading to a poorly supported clade containing

Teratoscincus, Quedenfeldtia, Aristelliger and Euleptes, and a

third branch leading to a strongly supported clade containing

Saurodactylus as the sister group to a monophyletic, well

supported clade of sphaerodactyl geckos. Within the sphaero-

dactyl geckos there were two major clades, one consisting of

Pseudogonatodes, Coleodactylus and Sphaerodactylus, and an-

other clade containing Lepidoblepharis and Gonatodes.

Dating phylogenies

The Bayesian phylogeny did not fit a molecular clock. The log

likelihood of the constrained tree was –24197.14, and the 2 ln

Bayes factor comparing constrained (clock) and uncon-

strained (non-clock) trees was 166.2, which indicates strong

support for the null hypothesis (unconstrained tree, non-

clock).

Because the phylogeny departed from a molecular clock, we

used the nonparametric rate-smoothing method with the

Powell algorithm to estimate dates of divergence (Table 6;

Fig. 3). The dates provided by this analysis are concordant

with divergence dates from other studies. The split between the

Carphodactylidae and Diplodactylidae was estimated to be

approximately 66 Myr bp using immunological data (King,

1987) and our data suggest a similar divergence date of

69.9 Myr bp. Another immunological study estimated the

Rhoptropus/Phelsuma split to have occurred about 70 Myr bp

(Joger, 1985) and our estimate was 66.8 Myr bp. The estimates

by Wiens et al. (2006a,b), on the other hand, produced

divergence dates quite different from those presented here.

Wiens et al. (2006a,b) dated the Teratoscincus/Gekko split to

Table 3 Estimated models of sequence evolution and total

number of characters for each data partition used in the Bayesian

phylogenetic analyses.

Partition Model

Number of

characters in

partition

All data GTR+I+G 2637

RAG2 GTR+I+G 365

c-mos GTR+I+G 383

ACM4 GTR+I+G 444

RAG1 GTR+I+G 1050

PDC GTR+I+G 395

1st codon GTR+G 879

2nd codon GTR+I+G 879

3rd codon GTR+G 879

RAG2 1st codon GTR+G 121

RAG2 2nd codon GTR+I 122

RAG2 3rd codon HKY+G 122

c-mos 1st codon GTR+G 127

c-mos 2nd codon GTR+G 128

c-mos 3rd codon GTR+G 128

ACM4 1st codon GTR+G 148

ACM4 2nd codon GTR+G 148

ACM4 3rd codon GTR+G 148

RAG1 1st codon HKY+G 350

RAG1 2nd codon GTR+G 350

RAG1 3rd codon HKY+G 350

PDC 1st codon GTR+G 132

PDC 2nd codon GTR+I 132

PDC 3rd codon HKY+G 131

Table 4 Insertion and deletion (indel) events for each data set.

Gene Taxon Event

Size

(bp) Position

c-mos Oedura marmorata Deletion 12 189

Hemidactylus frenatus Insertion 9 213

Cnemaspis limi Insertion 3 219

Coleodactylus brachystoma Deletion 3 231

Gonatodes annularis Deletion 12 231

Gonatodes hasemani Deletion 12 231

Gonatodes sp. Deletion 12 231

Hemidactylus frenatus Deletion 21 231

Rhineura floridana Deletion 21 231

ACM4 Gonatodes albogularis Insertion 3 150

RAG1 Eublepharidae Deletion 12 75

Gekkonidae Deletion 12 75

Coleodactylus brachystoma Deletion 6 90

Diplodactylidae Deletion 3 105

Carphodactylidae Deletion 3 105

Pygopodidae Deletion 3 105

Coleodactylus brachystoma Deletion 18 171

Pristurus carteri Insertion 3 708

PDC Phyllodactylus xanti Deletion 3 151

Position indicates distance of the indel, in bases, from the first base of

each gene. Higher taxonomic categories follow Han et al. (2004).

Table 5 Bayes factor comparisons of all partitioning strategies.

Partition P1 P2 P3 P4

P1 – all data )24332.52

P2 – by gene 64.74 )24300.15

P3 – by codon 351.46 286.72 )24156.79

P4 – by gene and

codon

436.96 372.22 85.5 )24114.04

Bold values along the diagonal are the harmonic mean likelihood

values for each partitioning strategy. Values below the diagonal are 2 ln

Bayes factors with rows representing the H0 and columns the HA. All

comparisons show strong support for the more complex H0.
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63.7 ± 7.7 Myr bp, based on ages derived from a penalized-

likelihood analysis of RAG1 data vs. 113.2 ± 47.6 Myr bp in

our analyses. Possible reasons for these differences could

include the different data sets used and different methods of

estimating branch lengths, as well as the different calibrations

used between our two studies. Further, the Wiens et al.

(2006a,b) study uses only a single gene to estimate divergence

dates, which is typically less accurate than multi-gene estimates

(Bell & Donoghue, 2005).

Hypothesis testing

Bayes factor comparisons between the unconstrained phylog-

eny and alternative hypotheses are summarized in Table 7. The

harmonic mean likelihood of the unconstrained topology (H0,

our default Bayes tree from Fig. 2) had a much larger value

than the alternative constrained topologies (H1–H4; Fig. 1) and

was strongly preferred (sensu Kass & Raftery, 1995) in every

comparison.

Biogeography

Our primary biogeographical interest was in the clade

containing the sphaerodactyl geckos, Saurodactylus, Teratoscin-

cus, Quedenfeldtia, Aristelliger, Euleptes and Pristurus. There

was slight variation in diva analyses among the multiple fully

bifurcated trees, but all scenarios indicated that the ancestral

area for the entire clade was North Africa, the Mediterranean

and the Arabian Peninsula. All analyses also required three

Table 6 Estimated ages (in Myr) and the corresponding 95% CI

for all nodes, obtained using nonparametric rate smoothing (node

labels shown in Fig. 3).

Node Date CI Node Date CI Node Date CI

A 144.6 61.6 N 70.5 30.5 AA 29.4 13.6

B 133.9 56.8 O 70.5 30.5 AB 28.6 12.5

C 113.2 47.6 P 69.9 30.5 AC 27.6 10.9

D 100.6 42.2 Q 68.2 28.4 AD 26.3 11.8

E 97.1 42.0 R 67.9 28.5 AE 23.1 9.6

F 95.9 40.4 S 67.2 25.8 AF 22.8 10.5

G 95.7 40.6 T 66.8 29.4 AG 20.0 0.0

H 80.9 34.5 U 65.1 28.5 AH 19.0 9.2

I 78.6 35.3 V 50.3 22.3 AI 14.6 6.4

J 75.5 31.4 W 42.8 18.7 AJ 10.0 0.0

K 75.4 33.9 X 34.1 14.8 AK 5.6 2.3

L 71.8 32.4 Y 30.8 13.4

M 71.8 30.6 Z 29.8 12.8

Sphaerodactylus ocoae

Teratoscincus scincus

Gekko gecko

Oedura marmorata

Aristelliger lar

Gonatodes caudiscutatus

Trachydosaurus rugosus

Quedenfeldtia trachyblephara

Sphaerodactylus nigropunctatus
Sphaerodactylus torrei

Coleonyx variegatus

Teratoscincus microlepis

Nephrurus milii

Cnemaspis limi

Phyllodactylus xanti

Eublepharis macularius

Sphaerodactylus elegans

Saurodactylus brosseti

Euleptes europaea

Lepidoblepharis sp.

Rhacodactylus ciliatus

Gonatodes hasemani

Pristurus carteri

Narudasia festiva

Phelsuma madagascariensis

Gonatodes annularis

Gonatodes sp.
Gonatodes humeralis

Sphaerodactylus roosevelti

Lepidoblepharis xanthostigma

Coleodactylus septentrionalis

Teratoscincus roborowskii

Carphodactylus laevis

Pseudogonatodes guianensis

Rhineura floridana

Coleodactylus brachystoma

Lepidodactylus lugubris

Lialis burtonis

Hemidactylus frenatus

Gonatodes daudinii
Gonatodes albogularis

Rhoptropus boultoni

Pygopus nigriceps
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Sphaerodactylinae
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G
ekkoninae

Diplodactylidae
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Pygopodidae

Gekkonidae

Outgroups

Figure 2 Bayesian phylogram using the best-fit partition strategy, with data partitioned by gene and codon. Labels above nodes represent

the posterior probabilities. Black circles indicate nodes with parsimony bootstrap values > 70. Higher-level taxonomy follows Han et al.

(2004).
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dispersal events. The first dispersal event was to the Western

Hemisphere in the ancestor to the Saurodactylus + sphaero-

dactyl clade. Another dispersal to the Western Hemisphere was

required for the genus Aristelliger and was placed at several

different nodes depending on which fully bifurcated tree was

analysed. The final dispersal event was to central and south

Asia for the genus Teratoscincus and, like Aristelliger, was

placed at several different nodes depending on which fully

bifurcated tree was analysed.

DISCUSSION

Phylogeny

The content of the novel, expanded sphaerodactyl clade

recovered in the analysis is surprising. Although the inclusion

of Saurodactylus, Quedenfeldtia and Pristurus in this group has

been proposed previously and supported by morphological

characters (Kluge, 1995), the genera Teratoscincus, Euleptes and

Aristelliger have never before been associated with one another.

The exclusion of Cnemaspis and Narudasia from this clade, as

well as the lack of support for a sister group relationship of

Pristurus to the New World sphaerodactyls or to Quedenfeldtia,

is at odds with previous hypotheses based on morphology

(Arnold, 1990a,b, 1993; Kluge, 1995). We suggest that certain

shared features (e.g. small size and diurnality) may have

yielded extensive homoplasy in a diversity of characters,
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Figure 3 Chronogram of the partitioned

Bayesian phylogeny generated using non-

parametric rate smoothing. Approximate

divergence dates are indicated along the

x-axis. Grey bars indicate 95% confidence

intervals calculated from bootstrap analysis.

Actual dates and confidence intervals are

listed in Table 6. Black circles represent fixed-

age nodes; grey circles, minimum-age con-

straint nodes. Globes illustrate the break-up

of Gondwana and the opening of the Atlantic

Ocean shown at 200 Myr bp, 90 Myr bp and

the present (modified from PALEOMAP

website, http://www.scotese.com).

Table 7 Bayes factor comparisons of alternative topological

hypotheses (HA, summarized in Fig. 1) to the optimal, uncon-

strained Bayesian topology (H0, Fig. 2) (all comparisons show

strong support for the unconstrained topology).

Alternative

hypothesis (HA) –l Ln

2 ln Bayes

factor Evidence for H0

H1 )24122.18 16.28 Strongly supported

H2 )24150.04 72.00 Strongly supported

H3 )24124.00 19.92 Strongly supported

H4 )24371.17 514.26 Strongly supported

T. Gamble et al.

96 Journal of Biogeography 35, 88–104
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd



particularly those of the head, which would be most affected by

miniaturization and large eye size.

The highly autapomorphic Teratoscincus is monophyletic, as

has been demonstrated by previous workers (Macey et al.,

1999). However, Teratoscincus’s distinctive position as the

sister group to the remaining Gekkonidae (Kluge, 1987) is

rejected. Han et al. (2004) also rejected this relationship, but

found no evidence to support particularly close relationships

with any other genera based on partial c-mos sequence data

alone. Our results likewise provide no strong support for

affinities within the expanded sphaerodactyl clade.

The West Indian Aristelliger was considered to be enigmatic

by Underwood (1954), who regarded it as a basal gekkonid

because of its retention of oil droplets in the eyes and its

amphicoelous vertebrae. Hecht (1952) suggested on the basis

of external digital structure that it might be related to

Tarentola or Phyllopezus. Russell (1976, 1979) demonstrated

that the internal architecture of the digits was relatively simple

in Aristelliger, but found nothing to link it closely to other

gekkonid genera (Russell & Bauer, 2002). Its inclusion in the

same large clade as sphaerodactyls is not entirely unexpected.

Immunological distances between Sphaerodactylus and Aristel-

liger were found to be lower than between the former and

other genera of gekkonine geckos (Hass, 1991; Hedges, 1996).

We found strong support for its sister group relationship with

the North African Quedenfeldtia, although this divergence

seems to be ancient (Fig. 3). Interestingly, a putative synapo-

morphy linking Aristelliger and Teratoscincus was identified

nearly 20 years ago (Bauer & Russell, 1989), but was ignored

and regarded as convergence because any close relationship

between these two taxa was considered implausible. Both taxa

possess parafrontal bones (Fig. 4), structures apparently

uniquely derived within the Gekkota. These structures may

be evidence of a sister group relationship between these genera,

or they may be more widespread within the clade to which

these taxa belong. Alternatively, these structures may not be

ossified in other members of the clade, all of which are much

smaller in size than either Teratoscincus or Aristelliger.

The subject of clutch size presents another potential

synapomorphy for the Spaherodactylidae. Most geckos possess

a fixed clutch size of two eggs (Kluge, 1987) although several

lineages will lay only one egg per clutch. Geckos that lay single

egg clutches are typically smaller species, and the reduction in

clutch size has been associated with small body size, for

example in sphaerodactyl geckos and Saurodactylus (Kluge,

1995; Schleich et al., 1996). Several medium- to large-size

geckos, such as Quedenfeldtia, Pristurus and Aristelliger (Hecht,

1952; Kluge, 1995), also posses single egg clutches, a hitherto

unexplained feature. With the exception of Teratoscincus,

which lays two eggs per clutch (Szczerbak & Golubev, 1986),

and Euleptes, which lays one or two eggs per clutch (Rieppel &

Schneider, 1981), all other members of the Sphaerodactylidae

lay single egg clutches.

Euleptes was resurrected from the synonymy of Phyllodacty-

lus by Bauer et al. (1997) to accommodate the single living

species of Mediterranean leaf-toed gecko. Bauer et al. (1997),

however, suggested no particularly close relationships with

other genera, but rather emphasized that a suite of derived

morphological characters supported the recognition of Eulep-

tes europaea as a lineage distinct from all other leaf-toed taxa.

Some authors have suggested close affinities of Euleptes with

leaf-toed geckos of Africa and/or Australia, but our broader

phylogenetic analysis of all gekkotan genera strongly supports

these taxa, exclusive of Euleptes, as part of a large, chiefly Afro–

Malagasy radiation (unpublished data) represented in this

study by Rhoptropus and Phelsuma.

Not surprisingly, we find strong support for the Sphaero-

dactylinae as traditionally construed, and for the monophyly of

each of the constituent genera for which we had multiple

samples. We retrieved the same pattern of relationships among

Pseudogonatodes, Coleodactylus and Sphaerodactylus as Kluge

(1995), albeit with poor nodal support. Our results differ,

however, from the morphologically derived phylogeny, as well

as all pre-cladistic hypotheses of relationship (Noble, 1921;

Parker, 1926; Vanzolini, 1968) in finding strong support for

the sister-group status of Gonatodes and Lepidoblepharis. All

previous hypotheses have considered Gonatodes as the sister

group to the remaining genera, in part on the basis of its

absence of an ungual sheath.

Taxonomy

Our data strongly support the content of, if not the generic

interrelationships within, the basalmost clade in the Gekkon-

idae (sensu Han et al., 2004). We find strong support for the

Sphaerodactylinae (sensu Underwood, 1954; Kluge, 1967), but

reject Kluge’s (1987) Teratoscincinae and Sphaerodactylini

(inclusive of Pristurus). In order to maintain a classification

A B

pf

5 mm 5 mm

Figure 4 Dorsal views of skulls of (a) Aristelliger georgeensis

(CAS 176485); (b) Teratoscincus przewalskii (CAS 171013) show-

ing the position of the parafrontal bones (pf), a putative syna-

pomorphy of the clade subtended by node E (Fig. 3). Skulls were

imaged from intact specimens using high-resolution X-ray com-

puted tomography.
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that is isomorphic with respect to our retrieved phylogeny, we

propose a new classification for this portion of the Gekkota

(Fig. 5; Table 8). The entire expanded sphaerodactyl clade is

accorded familial rank as the Sphaerodactylidae (Fig. 5).

Within this group, the well supported Saurodactylus + New

World sphaerodactyl clade is defined as the Sphaerodactylinae,

and the five New World genera that originally constituted

Underwood’s (1954) Sphaerodactylidae comprise the Sphaero-

dactylini. All other members of the Sphaerodactylidae (Pristu-

rus, Teratoscincus, Euleptes, Aristelliger, Quedenfeldtia) are

considered incertae sedis within the family. The name Tera-

toscincinae remains available for a clade including Teratoscin-

cus should future research clarify relationships among these

genera.

Biogeography

The combination of a robust, multi-gene phylogeny, diver-

gence date estimation using both fossils and biogeographical

events, and dispersal–vicariance analysis provided a clear

hypothesis regarding the biogeography of the sphaerodactyl

geckos and their closest relatives. diva analysis shows that the

Sphaerodactylidae probably had its origins in a region

containing what is now northern Africa, the Mediterranean

and the Arabian peninsula during the mid-Cretaceous.

Our data strongly support a Cretaceous divergence between

the New World sphaerodactyls and Saurodactylus, and that

cladogenesis was associated with the opening of the Atlantic

Ocean c. 100–120 Myr bp (Parrish, 1993; Hay et al., 1999) and

supports the vicariance hypothesis. The opening of the South

Atlantic has also been proposed to be responsible for major

divergences within the Amphisbaenidae (Macey et al., 2004).

Within the Western Hemisphere, the presumed centre of

origin of sphaerodactyl geckos is northern South America,

including Colombia and Venezuela (Vanzolini, 1968). This

region still contains the greatest diversity of species of

Lepidoblepharis, Pseudogonatodes and Gonatodes. Coleodactylus

has its greatest diversity within the Amazon basin and Brazilian

Cerrado. Most Sphaerodactylus species occur in the Caribbean,

where the genus reaches its greatest diversity. The diversifica-

tion of Sphaerodactylus seems to have coincided with the

period of increased connectivity of the Greater Antilles and the

Caribbean to South America at the beginning of the Oligocene

(Crawford & Smith, 2005).

The colonization of the New World by geckos is clearly

complex. Our analyses indicate that the Sphaerodactylidae is of

Gondwanan origin and that vicariance alone is sufficient to

explain the presence of Gonatodes, Sphaerodactylus, Lepidob-

lepharis, Pseudogonatodes and Coleodactylus in the Americas. It

may also explain the divergence of Aristelliger from Queden-

feldtia. On the other hand, the endemic Neotropical members

of the genera Tarentola (Carranza et al., 2000, 2002), Hemi-

dactylus (Carranza & Arnold, 2006) and Lygodactylus

(M. Vences, personal communication) appear to be the result

of post-Gondwanan dispersal from the Old World. The origin

of the remaining Neotropical genera of geckos (Homonota,

Bogertia, Phyllodactylus, Phyllopezus, Gymnodactylus, Theca-

dactylus) remains uncertain, but our results suggest that the

Coleodactylus

Sphaerodactylus

Aristelliger

Diplodactylidae

Gonatodes

Teratoscincus

Lepidoblepharis

Pseudogonatodes

Pristurus

Saurodactylus

Eublepharidae

Pygopodidae

Gekkonidae

Qedenfeldtia

Carphodactylidae

Sphaerodactylinae

Sphaerodactylini

Sphaerodactylidae

Euleptes

Figure 5 Summary of the phylogenetic

relationships and higher level taxonomy of

the spaherodactyl geckos and related genera,

as presented in this paper.
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New World Phyllodactylus, at least, is representative of another

ancient lineage that may be of Gondwanan origin.

There is ambiguity in the dispersal–vicariance analysis

regarding where on our phylogeny the dispersal to central

Asia occurred. The additional information provided by the

fossil and biogeographical calibrated dating can provide

some insight. There is strong evidence for an extensive

faunal exchange between Africa and Asia throughout the

Paleogene (Ducrocq, 2001; Antoine et al., 2003; Marivaux

et al., 2005). A possible scenario for the dispersal of the

Teratoscincus lineage from north Africa/Arabia to central

Asia was during the middle Eocene via an eastern trans-

Tethys dispersal route, the so-called ‘Iranian route’, linking

the faunas of northern Africa and Arabia to south-west Asia

(Gheerbrant & Rage, 2006). Such a scenario puts Terato-

scincus in south Asia at the time of the Indian collision with

Asia, 40–50 Ma, and subsequent vicariant events (Macey

et al., 1999).

The apparent switch in historical biogeography from a

vicariance-dominated paradigm back to a dispersalist para-

digm, while welcome, must be tempered. There is no doubt

that a vicariance-only viewpoint (Nelson, 1979) is short-

Table 8 Previous and current higher order classification of extant Gekkota.

Underwood (1954)

Gekkonoidea

Eublepharidae

Sphaerodactylidae: Coleodactylus,

Gonatodes, Lepidoblepharis,

Pseudogonatodes, Sphaerodactylus

Gekkonidae

Diplodactylinae: Aristelliger,

Saurodactylus, Teratoscincus

Gekkoninae: Euleptes

incertae sedis: Pristurus, Quedenfeldtia

Kluge (1967, 1976)

Gekkonidae

Eublepharinae

Gekkoninae: Aristelliger, Euleptes,

Pristurus, Quedenfeldtia,

Saurodactylus, Teratoscincus

Spaherodactylinae: Coleodactylus,

Gonatodes, Lepidoblepharis,

Pseudogonatodes, Sphaerodactylus

Diplodactylinae

Diplodactylini

Carphodactylini

Pygopodidae

Pygopodinae

Lialisinae

Kluge (1987)

Gekkota

Eublepharoidea

Eublepharidae

Gekkonoidea

Gekkonidae

Gekkoninae

‘Ptyodactylini’: Euleptes, Quedenfeldtia, Saurodactylus

Gekkonini: Aristelliger

Sphaerodactylini: Pristurus, Coleodactylus, Gonatodes,

Lepidoblepharis, Pseudogonatodes, Sphaerodactylus

Teratoscincinae: Teratoscincus

Pygopodidae

Diplodactylinae

Carphodactylini

Diplodactylini

Pygopodinae

Han et al (2004)

Gekkota

Eublepharidae

Gekkonidae

Gekkoninae: Aristelliger, Euleptes, Pristurus, Quedenfeldtia,

Saurodactylus, Teratoscincus

Sphaerodactylinae: Coleodactylus, Gonatodes, Lepidoblepharis,

Pseudogonatodes, Sphaerodactylus

Diplodactylidae

Carphodactylidae

Pygopodidae

This paper

Gekkota

Eublepharidae

Gekkonidae

Sphaerodactylidae: Coleodactylus, Gonatodes, Lepidoblepharis,

Pseudogonatodes, Euleptes, Sphaerodactylus, Aristelliger,

Pristurus, Quedenfeldtia, Saurodactylus, Teratoscincus

Diplodactylidae

Carphodactylidae

Pygopodidae

Gondwanan vicariance in gecko lizards
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sighted and biologically unrealistic. Similarly, the recent

dispersalist trend (Cook & Crisp, 2005; McGlone, 2005; de

Queiroz, 2005) should not be allowed to overshadow the

reality and importance of vicariance in shaping species’

distributions. This study and others (Noonan & Chippin-

dale, 2006) have shown that vicariance is still a viable

hypothesis for many Gondwanan taxa. The biological reality

of animal and plant distributions is often more complicated

than the simplistic biogeographical models at our disposal,

and biogeographers must consider that vicariance, dispersal

and extinction are each important processes in shaping

species’ distributions (Zink et al., 2000; Sanmartı́n & Ron-

quist, 2004; Cook & Crisp, 2005; Halas et al., 2005;

McGlone, 2005).
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