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ed sex chromosomes – but can also be used to identify which 
chromosomes in the genome are the sex chromosomes. We 
here identify a ZZ/ZW sex chromosome system in  P. wir-
shingi . Furthermore, we show that 4 of the female-specific 
markers contain fragments of genes found on the avian Z 
and discuss homology with  P. wirshingi  sex chromosomes. 

 © 2019 S. Karger AG, Basel 

 Investigating the number and directionality of transi-
tions among sex-determining systems is a vital prerequi-
site for studying sex chromosome evolution. This in-
volves not only determining whether a species has a het-
erogametic male (XX/XY) or female (ZZ/ZW) sex 
chromosome system, but also identifying which chromo-
somes in the genome are the sex chromosomes. However, 
we still lack basic knowledge of sex-determining mecha-
nisms for many species [Bachtrog et al., 2014], let alone 
the genomic homology of said sex chromosomes. Cyto-
genetic methods, like karyotyping, have long been the 
principal means of identifying an organism’s sex chromo-
some system, yet most vertebrate species possess mor-
phologically indistinguishable sex chromosomes [Devlin 
and Nagahama, 2002; Matsubara et al., 2006; Stöck et al., 
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 Abstract 

 Investigating the evolutionary processes influencing the or-
igin, evolution, and turnover of vertebrate sex chromosomes 
requires the classification of sex chromosome systems in a 
great diversity of species. Among amniotes, squamates (liz-
ards and snakes) – and gecko lizards in particular – are wor-
thy of additional study. Geckos possess all major vertebrate 
sex-determining systems, as well as multiple transitions 
among them, yet we still lack data on the sex-determining 
systems for the vast majority of species. We here utilize re-
striction-site associated DNA sequencing (RADseq) to iden-
tify the sex chromosome system of the Puerto Rican endem-
ic leaf-toed gecko (Phyllodactylidae:  Phyllodactylus wir-
shingi ), in order to confirm a ZZ/ZW sex chromosome system 
within the genus, as well as to better categorize the diversity 
within this poorly characterized family. RADseq has proven 
an effective alternative to cytogenetic methods for deter-
mining whether a species has an XX/XY or ZZ/ZW sex chro-
mosome system – particularly in taxa with non-differentiat-
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2011; Gamble and Zarkower, 2014; Otto, 2014]. Further-
more, such data do not address which chromosomes in 
the genome are the sex chromosomes in a comparative 
framework. However, recent advances in both cytogenet-
ics and DNA sequencing techniques have facilitated the 
identification of sex chromosomes in many additional 
species, spawning a renewed interest in ascertaining and 
classifying the sex chromosome systems of previously in-
tractable taxa [Pokorná et al., 2011; Deakin et al., 2016; 
Gamble et al., 2017, 2018; Nielsen et al., 2018].

  Even within a group as varied as squamates, the geck-
os (Squamata: Gekkota) are a stand-out clade worthy of 
more detailed study. Geckos are a species-rich (>1,700 
species [Uetz et al., 2017]), near globally distributed clade 
of lizards, who possess all major vertebrate sex-determin-
ing systems, as well as multiple transitions among them 
[Moritz, 1990; Ezaz et al., 2009; Gamble, 2010; Gamble et 
al., 2015a]. The high diversity of geckos makes them an 
ideal vertebrate model to study the origins and evolution 
of sex chromosomes. However, huge swaths of the gecko 
phylogeny lack any information about sex-determining 
systems, and fewer than 3% of gecko species have a sex-
determining system known with high confidence [Gam-
ble et al., 2015a]. Despite this paucity of data, roughly 
one-half to two-thirds of all observed transitions among 
squamate sex-determining systems are in geckos [Gam-
ble et al., 2015a]. Fostering an enhanced knowledge con-
cerning gekkotan, and thus squamate, sex-determining 
systems will increase their utility as a model clade to study 
the origins and evolution of sex-determining systems 
[Janzen and Krenz, 2004]. Therefore, a concentrated ef-
fort to identify sex chromosome systems in additional 
clades will serve to fill crucial gaps in our knowledge, and 
permit more comprehensive hypothesis testing.

  The Phyllodactylidae are distributed throughout the 
New World, North Africa, Europe, and the Middle East. 
Of the more than 135 species, only 14 have published 
karyotypes and just 2 species,  Phyllodactylus lanei  and 
 Thecadactylus rapicauda,  exhibit evidence of heteromor-
phic sex chromosomes [King, 1981; Pellegrino et al., 2004, 
2005, 2010; Olmo and Signorino, 2005; Murphy et al., 
2009; Schmid et al., 2014]. However, in both species, the 
story is complex. For example, in  P. lanei , different karyo-
typic formulas between sexes were indicative of a ZZ/ZW 
sex chromosome system, yet more recent work could not 
replicate these findings [Castiglia et al., 2009]. Similarly in 
 T. rapicauda , the authors conclude that sex chromosomes 
are in a “nascent state of differentiation” as not all sampled 
populations were heteromorphic. Using a recently devel-
oped restriction-site associated DNA sequencing (RAD-

seq) methodology [Gamble and Zarkower, 2014], another 
population of  T. rapicauda  from Trinidad and Tobago 
was found to also have ZZ/ZW sex chromosomes [Gam-
ble et al., 2015a]. In addition to ZZ/ZW sex chromosomes, 
a number of species in the genus  Tarentola  show strong 
evidence of environmentally determined sex (i.e., temper-
ature-dependent sex determination or TSD) [Nettmann 
and Rykena, 1985; Hielen, 1992]. Thus, there are some 
interesting inferences one can draw within this family. 
First, we know very little about the diversity of sex chro-

Table 1.  Phyllodactylus wirshingi samples used in this study

ID Sex Locality

TG2007 Male Isla de Caja de Muertos, Puerto Rico
TG3210 Male Bosque Estatal de Guánica, Puerto Rico
TG3219 Male Bosque Estatal de Guánica, Puerto Rico
TG3220 Male Bosque Estatal de Guánica, Puerto Rico
TG3221 Male Bosque Estatal de Guánica, Puerto Rico
TG3223 Male Bosque Estatal de Guánica, Puerto Rico
TG3225 Male Bosque Estatal de Guánica, Puerto Rico
TG3228 Male Bosque Estatal de Guánica, Puerto Rico
TG2016a Male Bosque Estatal de Guánica, Puerto Rico
TG3208a Male Bosque Estatal de Guánica, Puerto Rico

TG2004 Female Isla de Caja de Muertos, Puerto Rico
TG2008 Female Isla de Caja de Muertos, Puerto Rico
TG2009 Female Isla de Caja de Muertos, Puerto Rico
TG2385 Female Bosque Estatal de Guánica, Puerto Rico
TG3209 Female Bosque Estatal de Guánica, Puerto Rico
TG3222 Female Bosque Estatal de Guánica, Puerto Rico
TG3224 Female Bosque Estatal de Guánica, Puerto Rico
TG3226 Female Bosque Estatal de Guánica, Puerto Rico
TG3227 Female Bosque Estatal de Guánica, Puerto Rico
TG2017a Female Bosque Estatal de Guánica, Puerto Rico

a These samples were used for PCR validation only.

Table 2.  PCR primers used to validate female-specific RADseq 
markers in Phyllodactylus wirshingi

Primer ID Sequence (5′→3′) Annealing 
temperature

Pw84-F CAGAAGGCATGAGACTGGAGAG 57°C
Pw84-R CAAATCTCCAGGAGCAGAGTGG

Pw116-F CGATTCCCTTGCCTTAATCGGT 56°C
Pw116-R AGATTCTGACCCAGGAAGAGGA

Pw186-F ACTTTCCACTAAGGTGATCCCC 56°C
Pw186-R GGGCCAAGGACTATGACTTGAA

Pw187-F GACTGAGGAGGGTCTGCTCT 56°C
Pw187-R GTCTTCTGGGCTCTGACTGG
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mosome systems within Phyllodactylidae, and given the 
diversity observed in other gekkotan groups, data from 
additional species are essential before more definitive 
conclusions can be drawn. Second, based on our limited 
evidence, there is at least 1 transition among sex-deter-
mining systems within Phyllodactylidae – between TSD 
and female heterogamety. Lastly, both  T. rapicauda  and 
 P. lanei  possess ZZ/ZW sex chromosome systems, but are 
their sex chromosomes homologous?

  Here, we used RADseq to discover the sex chromo-
some system of the Puerto Rican endemic leaf-toed gecko 
( Phyllodactylus wirshingi ), to confirm the ZZ/ZW sex 
chromosome system within the genus, as well as to better 
categorize sex chromosome diversity within the Phyllo-
dactylidae. By utilizing paired-end Illumina sequencing, 
we generated large RADseq contigs and successfully iden-
tified 4 genes putatively linked to the sex chromosomes. 
We discuss sex chromosome homology within Gekkota 
and among amniotes, with particular attention paid to 
synteny between the newly discovered  P. wirshingi  ZZ/
ZW chromosomes and the avian Z.

  Materials and Methods 

 Using the Qiagen ®  DNeasy Blood and Tissue Kit, we extracted 
genomic DNA from tail clips, or liver, from 8 adult male and 9 
adult female  P. wirshingi  collected near Guánica in Puerto Rico 
and the island of Caja de Muertos ( Table 1 ). RADseq libraries were 
constructed following a modified protocol from Etter et al. [2011] 
as described in Gamble et al. [2015a]. Genomic DNA was digested 

with high-fidelity  Sbf I restriction enzyme (New England Biolabs). 
Individually barcoded P1 adapters were ligated to the  Sbf I cut site 
for each sample. We pooled samples into multiple libraries, soni-
cated, and size-selected into 200–500-bp fragments using magnet-
ic beads in a PEG/NaCl buffer [Rohland and Reich, 2012]. Librar-
ies were blunt-end repaired and dA-tailed before ligating a P2 
adapter containing unique Illumina barcodes to each pooled li-
brary. We amplified libraries via PCR (16 cycles) with Q5 high-
fidelity DNA polymerase (New England Biolabs) and cleaned/size-
selected a second time into 250–600-bp library fragments using 
magnetic beads in PEG/NaCl buffer. Libraries were pooled and 
sequenced using paired-end 125-bp reads on an Illumina 
HiSeq2500 at the Medical College of Wisconsin.

  We demultiplexed, trimmed, and filtered raw Illumina reads 
using the process_radtags function in STACKS (v1.4.8) [Catchen 
et al., 2011]. We applied RADtools (v1.2.4) [Baxter et al., 2011] to 
generate candidate alleles for each individual and candidate loci 
across all individuals from the forward reads employing previous-
ly described parameters [Gamble et al., 2015a, 2017]. We identified 
putative sex-specific markers from the RADtools output using a 
custom python script [Gamble et al., 2015a]. This script also pro-
duced a second list of “confirmed” sex-specific RAD markers, 
which are a subset of the initial list of sex-specific RAD markers 
that excludes any sex-specific marker that also appears in the orig-
inal raw read files from the opposite sex from further consideration 
[Gamble and Zarkower, 2014; Gamble et al., 2015a]. We assembled 
forward and reverse reads from the confirmed sex-specific RAD 
markers into sex-specific RAD contigs using Geneious ®  (v10) 
[Kearse et al., 2012]. We then used these confirmed RAD contigs 
to design sex-specific PCR primers, also in Geneious (v10), and 
validated the sex specificity of a subset of the confirmed female-
specific markers by PCR ( Table 2 ).

  We attempted to assess synteny between the newly identified 
sex-specific RAD markers in  P. wirshingi  with chicken chromo-
somes. The chicken genome is well annotated and widely used as 
a reference for comparative genomics in nonavian reptiles [Inter-
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  Fig. 1.   A–D  PCR validation of 4 female-spe-
cific RADseq markers in  Phyllodactylus 
wirshingi .  A  Pw84.  B  Pw116.  C  Pw186. 
 D  Px187. Primers amplified in a female-
specific manner in all examined male and 
female samples (see Table 1), generating a 
single (presumably W-specific) band in all 
but one locus, Pw186. The latter produced 
both Z- and W-specific bands. Specimen 
ID numbers are listed below each lane. 
 E  Cytogenetic map of the  Gallus gallus  Z 
chromosome depicting the location of 4 
genes identified by BLAST of  P. wirshingi  
female-specific RAD contigs (Table 3). 
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Homonota

Thecadactylus

Gymnodactylus

Ptyodactylus

Phyllopezus

Garthia

Asaccus

Haemodracon
2n = ? ; 2 sp., 0 karyo., 0 het.

2n = ? ; 18, 0, 0

2n = 42-44; 3, 1, 0

2n = 40; 10, 1, 0

2n = 42; 31, 2, 0

2n = 38-40; 5, 3, 0

2n = 38-40; 4, 2, 0

2n = ? ; 2, 0, 0

2n = 40*; 12, 1, 0

2n = 32–41; 51, 3, 1

Tarentola

Phyllodactylus

Unk.

Sex Chromosome System
TSD ZZ/ZW XX/XY

0 mya255075

  Fig. 2.  A time-calibrated genus-level phy-
logeny of the Phyllodactylidae, modified 
from Gamble et al. [2015a]. Sex chromo-
some systems, if known, are indicated by 
colored circles to the left of taxon names. 
Series of numbers under taxon names indi-
cate diploid (2n) chromosomal comple-
ment (when known), the number of de-
scribed species within the genus, the subset 
that have been karyotyped, and the number 
that exhibit heteromorphic sex chromo-
somes. Karyotype data from Olmo and Si-
gnorino [2005], Pellegrino et al. [2010], 
and Gamble et al. [2015a].  *  The 2n num-
ber for  Homonota  is currently unpub-
lished. Photographs of  Asaccus  and  Theca-
dactylus  by T. Pierson and A. Snyder, re-
spectively. 

Table 3.  The 4 hits from the BLAST of the 539 female-specific Phyllodactylus wirshingi RAD contigs against chicken genes demonstrat-
ing synteny with avian sex chromosomes

Query Gene name Transcript ID Chickena E value Hit start Hit end

PwF_429 TRPM3 ENSGALT00000024411 Z 1.21e–56 3,246 3,446
PwF_381 LIX1 ENSGALT00000024678 Z 3.87e–44 241 388
PwF_203 Novel gene ENSGALT00000028259 Z 1.25e–44 442 683
PwF_37 TRABD2A ENSGALT00000043645 Z 2.51e–47 809 656

 a The location of these genes on the chicken Z chromosome is shown in Figure 1.
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national Chicken Genome Sequencing Consortium, 2004; Alföldi 
et al., 2011; Pokorná et al., 2011; O’Meally et al., 2012]. We per-
formed BLAST of the assembled female-specific RAD contigs to 
the chicken transcriptome (using Ensembl [Zerbino et al., 2018]), 
implemented in Geneious (v10) [Kearse et al., 2012] with a maxi-
mum E-value cutoff of 1e –50  and word size of 15 bp.

  Results 

 Output from the RADtool analysis recovered 143,649 
RAD markers with 2 or fewer alleles including 1 male-
specific RAD marker and 574 female-specific RAD mark-
ers. Of these, we identified zero confirmed male-specific 
RAD markers and 539 confirmed female-specific RAD 
markers. “Confirmed” sex-specific markers, as described 
above, are a subset of the total number of sex-specific 
RAD markers that excludes RAD markers which oc-
curred in the raw read files of the opposite sex and likely 
are false positives. From this pool of confirmed female-
specific RAD contigs, we designed 11 primer pairs, 4 of 
which amplified in a sex-specific manner ( Fig. 1 ). These 
loci produced either a single band in each of the female 
samples with no amplification in male samples (Pw84, 
Pw116, and Pw187; i.e., a RAD marker presumably on the 
W chromosome) or 2 bands in females and a single band 
in males (Pw186; i.e., different-sized Z and W alleles). The 
combined results – an excess of female-specific RAD 
markers and PCR amplification of a subset of these mark-
ers only in females – is indicative of a ZZ/ZW sex chro-
mosome system within  Phyllodactylus  ( Fig. 2 ).

  BLAST queries of the 539 female-specific RAD contigs 
against chicken genes resulted in 4 hits ( Table 3 ). All 4 
matching genes are on the chicken Z chromosome, re-
vealing homology between the avian and the  P. wirshingi  
ZZ/ZW sex chromosomes ( Fig. 3 ).

  Discussion 

 The discovery of ZZ/ZW sex chromosomes in  P. wir-
shingi  makes it the second member of the genus with fe-
male heterogamety, the other being  P. lanei  [King, 1981]. 
The exact identity of the species King [1981] examined, 
however, is up for debate since subsequent karyotypes of 
 P. lanei  revealed different chromosomal arrangements 
and no heteromorphic sex chromosomes [Castiglia et al., 
2009]. Because King [1981] apparently did not keep 
vouchered specimens from his study, the exact identity of 
the species examined remains unknown. Castiglia et al. 
[2009] obtained their samples from Jalisco, Mexico, while 

Pogona vitticeps
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Varanus komodoensis*

Boa constrictor

Python molurus

Thamnophis sirtalis*

Takydromus sexlineatus*
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Christinus marmoratus

Phyllodactylus wirshingi

Coleonyx elegans
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Siebenrockiella crassicollis
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Gallus gallus*
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  Fig. 3.  Phylogenetic distribution and chromosomal synteny of the 
avian Z with the sex chromosomes of a selection of taxa spanning 
the amniote tree of life. Boxes at the tips of the phylogeny indicate 
the sex chromosome system, followed by sex chromosome synte-
ny, if known, with birds. For example, the ZZ/ZW sex chromo-
somes of the turtle,    Pelodiscus sinensis,  are homologous with chick-
en ( Gallus gallus ) chromosome 15. Rectangular boxes share sex 
chromosome synteny with birds while curved boxes do not. XY 
and ZW indicate male and female heterogamety, respectively. Sev-
eral taxa have unknown sex chromosome synteny (indicated by 
“?”), but comparative FISH experiments have shown that their sex 
chromosomes do not share homology with the avian Z [Pokorná 
et al., 2011; Matsubara et al., 2014]. When indicated by an asterisk, 
the pattern is reflective of the broader clade (e.g.,  Takydromus sex-
lineatus  and all other lacertid lizards examined to date share a ho-
mologous ZW sex chromosome system). For more details on sex 
chromosome synteny data, we refer the reader to the original data 
sources [Matsubara et al., 2006; Graves, 2008; Veyrunes et al., 2008; 
Kawagoshi et al., 2009, 2012, 2014; Kawai et al., 2009; Alföldi et al., 
2011; Deakin et al., 2016; Rovatsos et al., 2016a, b; Montiel et al., 
2016; Gamble et al., 2017]. Phylogeny modified from Anderson 
and Wiens [2017]. 
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King’s [1981] samples were from Guerrero, Mexico. Pre-
liminary genetic data suggest that  P. lanei  is likely a spe-
cies complex composed of multiple, undescribed species 
[Blair et al., 2015]. Thus, differences between studies may 
reflect karyotypic variation among cryptic taxa. Further 
complicating matters, 5  Phyllodactylus  species ( P. del-
campoi ,  P. bordai ,  P. tuberculosus ,  P. papenfussi , and  P. 
lanei )   all occur in Guerrero where King’s samples origi-
nated [Dixon and Kluge, 1964; Murphy et al., 2009; Gam-
ble, 2010], and it is possible that King’s samples were mis-
identified. 

  The large number of female-specific RAD markers 
identified in  P. wirshingi  suggests significant differentia-
tion between the Z and W chromosomes. Indeed, com-
pared to other squamate species, using similarly prepared 
 Sbf I RADseq libraries, the 539 sex-specific  P. wirshingi  
RAD markers are second only to the 855 female-specific 
RAD markers identified in the ZZ/ZW gecko  Christinus 
marmoratus  [Gamble et al., 2015a]. Because  C. marmora-
tus  has heteromorphic sex chromosomes [King and Rofe, 
1976], it is probable that  P. wirshingi  also has cytogeneti-
cally differentiated Z and W chromosomes. However, 
since it is not clear whether there is a direct relationship 
between the sequence similarity of sex chromosomes and 
the degree of chromosomal heteromorphism [Vicoso et 
al., 2013; Gamble et al., 2014], this would need to be veri-
fied cytogenetically.

  Using sex-specific RAD markers to identify a species’ 
sex chromosomes typically requires additional genomic 
resources because determining chromosomal synteny in-
volves comparing gene identity and order among species. 
Although most RAD markers map to noncoding frag-
ments, and thus provide little information as to their ge-
nomic location absent in a sequenced genome, a small 
number of RAD markers – usually less than 15% of RAD 
contigs – may overlap with a gene or other coding region 
[Amores et al., 2011; Baxter et al., 2011; Chutimanitsakun 
et al., 2011; Bruneaux et al., 2013]. Sequencing paired-end 
reads, as we have done here, will generate larger RAD 
contigs, which in turn increases the probability of identi-
fying genes [Amores et al., 2011; Baxter et al., 2011; Gam-
ble and Zarkower, 2014]. Sex-specific RAD markers with 
gene fragments can be used to query genomic assemblies 
of related species to identify the sex chromosomes [Bru-
neaux et al., 2013; Gamble and Zarkower, 2014; Fowler 
and Buonaccorsi, 2016; Qiu et al., 2016]. This is the ap-
proach we successfully applied here to identify synteny 
between the avian Z and the  P. wirshingi  ZZ/ZW.

  Among amniotes, the ancestral autosome that became 
the avian Z has been recruited into a sex-determining role 

at least 5 times ( Fig. 3 ): in birds; in the ZZ/ZW gecko, 
 Gekko hokouensis ; in an XX/XY clade of turtles,  Stauroty-
pus salvinii  and  S. triporcatus ; as part of the multiple sex 
chromosomes in monotremes; and finally, the ZZ/ZW 
sex chromosomes of  P. wirshingi  [Veyrunes et al., 2008; 
Kawai et al., 2009; Kawagoshi et al., 2014]. Comparative 
analyses, including cytogenetics and genome-scale data-
sets, have identified the sex chromosomes in at least 8 

Gehyra purpurascens
Gehyra nana
Gehyra australis
Gehyra mutilata
Hemidactylus turcicus
Hemidactylus mabouia
Hemidactylus frenatus
Cyrtodactylus pubisulcus
Gekko hokouensis
Gekko japonicus
Gekko gecko
Heteronotia binoei
Dixonius siamensis
Paroedura masobe
Paroedura oviceps
Paroedura lohatsara
Paroedura stumpfii
Christinus marmoratus
Phelsuma guentheri
Phelsuma guimbeaui
Phelsuma madagascariensis
Phelsuma dubia
Tarentola boettgeri
Tarentola mauritanica
Phyllodactylus lanei
Phyllodactylus wirshingi
Thecadactylus rapicauda
Sphaerodactylus nicholsi
Sphaerodactylus macrolepis
Gonatodes humeralis
Euleptes europaea
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Lialis burtonis
Aprasia parapulchella
Delma butleri
Underwoodisaurus milii
Correlophus ciliatus

120 80 40 0  mya

ZZ/ZW
XX/XY

TSD

  Fig. 4.  Evolution of sex-determining mechanisms in geckos. Col-
ored circles at the tips of the phylogenetic tree indicate sex-deter-
mining systems of selected species. Sex chromosomes in    Phyllo-
dactylus wirshingi  and  Gekko hokouensis  (highlighted in gray) both 
share homology with the avian Z chromosome. Given their phylo-
genetic placement, it is likely that these have evolved independent-
ly. Sex chromosome data were taken from multiple sources [Gam-
ble, 2010, and citations therein; Gornung et al., 2013; Gamble et al., 
2015a, 2018, and citations therein; Rovatsos et al., 2016a]. Phylog-
eny modified from Gamble et al. [2015b].   
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other amniote lineages, which were recruited from ances-
tral autosomes not homologous with the avian Z [Ma-
tsubara et al., 2006; Veyrunes et al., 2008; Graves, 2008; 
Kawagoshi et al., 2009, 2012, 2014; Kawai et al., 2009; 
Alföldi et al., 2011; Deakin et al., 2016; Montiel et al., 
2016; Rovatsos et al., 2016b; Gamble et al., 2017]. Further-
more, comparative FISH analyses using fluorescently la-
beled chromosome paints have shown that the sex chro-
mosomes of additional geckos,  Lialis burtonis  (XXXX/
XXY),  Coleonyx elegans  (XXXX/XXY), and  C. marmora-
tus  (ZZ/ZW), are not homologous to the avian ZZ/ZW 
[Pokorná et al., 2011; Matsubara et al., 2014]. Because  P. 
wirshingi  and  G. hokouensis  possess ZZ/ZW sex chromo-
somes that are homologous with the avian Z, it is worth 
asking whether their ZZ/ZW sex chromosomes are de-
rived from a common ancestor with “avian ZW” sex 
chromosomes [Ezaz et al., 2017]. While not impossible, it 
appears unlikely in this case. The phylogenetic distribu-
tion of these taxa, coupled with the numerous transitions 
among sex chromosome systems across geckos more gen-
erally, strongly suggests that the  P. wirshingi  and  G. ho-
kouensis  ZZ/ZW systems derived independently ( Fig. 4 ).

  The repeated recruitment of the avian Z as a sex chro-
mosome in amniotes can inform the search for factors 
that determine which ancestral chromosome will become 
a sex chromosome. There are several competing hypoth-
eses to address this. For example, it has been hypothesized 
that one or more of these extant sex chromosome systems 
are ancestral and thus exist in multiple lineages due to 
inheritance from a common ancestor [Graves and Peichel, 
2010; O’Meally et al., 2012; Ezaz et al., 2017]. As men-
tioned above, this seems unlikely, at least in geckos. How-
ever, there remain 2 other hypotheses that we can con-
sider here. First, some autosomes, because of their gene 
content, may be “better” at being sex chromosomes than 
others. These chromosomes may host genes playing a role 
in the sex-determining pathway that can be co-opted into 
controlling sex determination [Graves and Peichel, 2010; 
O’Meally et al., 2012]. The avian Z, for example, contains 
 DMRT1 , a member of a gene family involved in sex deter-
mination and sexual differentiation in all animals, and the 
likely sex-determining gene in birds and several other 
vertebrates [Raymond et al., 1998; Matsuda et al., 2002; 
Nanda et al., 2002; Yoshimoto et al., 2008; Smith et al., 
2009; Matson and Zarkower, 2012; Chen et al., 2014; 
Hirst et al., 2017]. Under this scenario, those chromo-
somes that are “better at being sex chromosomes” should 
be preferentially recruited into a sex-determining role in 
different lineages. Second, laboratory experiments with 
the roundworm  Caenorhabditis elegans  suggest that al-

most any kind of gene can become a sex-determining 
gene and every chromosome a sex chromosome [Hodg-
kin, 2002]. Thus, sex chromosome recruitment should be 
random, and there should be no biases when sex chromo-
some synteny is examined in a phylogenetic context. Dif-
ferentiating between these 2 alternatives is not straight-
forward because we only know the sex chromosomes of a 
small number of taxa. Indeed, the sex chromosome iden-
tity of nearly two-thirds of amniote sex chromosome sys-
tems remains unknown ( Fig. 3 ). To resolve this requires 
an approach that integrates phylogenetic, cytogenetic, 
and genomic analyses, and exploits species-rich verte-
brate model clades in which many transitions among sex 
chromosome systems have occurred, e.g., amniotes and/
or squamates. Only after identifying the sex chromo-
somes in most or all of the relevant lineages, we can say 
with any certainty whether there have been biases in 
which chromosomes get recruited into a sex-determining 
role. The current study makes an incremental step in 
achieving this objective.
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