Supplemental Figures:

Supplemental Figure 1: Karyotypes for *S. ariasae* (female, TG1241), *S. plummeri* (male, TG1244), and *S. streptophorus* (female, TG1247)—relative to the 17 assembled linkage groups in the *S. townsendi* genome—chromosome length bar chart and HiC contact map shown. Karyotype methods outlined in Main et al. 2012.
Supplemental Figure 2: *Sphaerodactylus* species with M/F WGS data. Comparing M/F read depth across sex chromosome linkage groups in each species LG3: *S. townsendi*, *S. nicholsi*, and *S. klauberi*; then LG1 for *S. notatus*, respectively.
Supplemental Figure 3: *Sphaerodactylus townsendi*, male nucleotide diversity calculated from RNAseq data using vcf tools. *S. townsendi* male-specific RADtags mapped to LG3 are denoted by orange ticks along the bottom of each graph. Grey horizontal line indicates the genomic mean value.
Supplemental Figure 4: *Sphaerodactylus inigoi*, comparison between M/F Fst values with RADseq (top) and RNAseq (bottom) data for *S. townsendi* LG3. Red line indicates the ‘autosomal’ mean (all other chromosomes except LG1 and LG3). Blue ribbon (top only) indicates the 95% confidence interval (μ + 2*σ).
Supplemental Figure 5: *Sphaerodactylus inigoi*, comparison between M/F Fst values with RADseq (top) and RNAseq (bottom) data for *S. townsendi* LG1. Red line indicates the ‘autosomal’ mean (all other chromosomes except LG1 and LG3). Blue ribbon (top only) indicates the 95% confidence interval ($\mu + 2\sigma$).
Supplemental Figure 6: *Sphaerodactylus macrolepis*, examination of M/F Fst values with RNAseq data across *S. townsendi* LG1 (top) and LG3 (bottom). Red line indicates the ‘autosomal’ mean (all other chromosomes except LG1 and LG3).
Supplemental Figure 7: Synteny of Sphaerodactylus sex chromosomes LG1 + LG3, the sex chromosomes linkage group in *Sphaerodactylus townsendii* relative to other squamates *Podarcis* and *Anolis*, and an outgroup, *Gallus*. Synteny plot generated using MCScanX and SynVisio, and silhouettes for *Podarcis*, *Anolis*, and *Gallus* were obtained from PhyloPic (*Anolis* by Sarah Werning and *Gallus* by Steven Traver).
Supplemental Table 1: Assembly stats

<table>
<thead>
<tr>
<th>Version</th>
<th>Tool Used at Each Step</th>
<th>N50</th>
<th>L50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly v1.1</td>
<td>SuperNova</td>
<td>12,629,056</td>
<td>37</td>
</tr>
<tr>
<td>Assembly v1.2</td>
<td>Tigmint</td>
<td>6,460,730</td>
<td>69</td>
</tr>
<tr>
<td>Assembly v1.3</td>
<td>ARCS</td>
<td>7,457,274</td>
<td>57</td>
</tr>
<tr>
<td>Assembly v1.4</td>
<td>TGS-Gapcloser</td>
<td>7,468,733</td>
<td>57</td>
</tr>
<tr>
<td>Assembly v1.5</td>
<td>Nextpolish</td>
<td>7,605,248</td>
<td>57</td>
</tr>
<tr>
<td>Assembly v1.6</td>
<td>3D-DNA</td>
<td>126,215,344</td>
<td>7</td>
</tr>
<tr>
<td>Assembly v1.7</td>
<td>Redundancy-filter</td>
<td>134,006,883</td>
<td>6</td>
</tr>
<tr>
<td>Assembly v1.8-2.1</td>
<td>10kb cutoff and annotation</td>
<td>134,006,883</td>
<td>6</td>
</tr>
</tbody>
</table>

Transcriptomes/Annotation

<table>
<thead>
<tr>
<th>Transcriptome</th>
<th>Tool Used</th>
<th>N50</th>
<th>L50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryo transcriptome</td>
<td>runDRAP</td>
<td>3,092</td>
<td>14,803</td>
</tr>
<tr>
<td>Head transcriptome</td>
<td>runDRAP</td>
<td>2,750</td>
<td>15,526</td>
</tr>
<tr>
<td>Meta transcriptome</td>
<td>RunMeta</td>
<td>2,320</td>
<td>14,981</td>
</tr>
<tr>
<td>Annotated transcripts</td>
<td>Funannotate</td>
<td>1,380</td>
<td>6,110</td>
</tr>
<tr>
<td>N60</td>
<td>L60</td>
<td>N70</td>
<td>L70</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>7,566,236</td>
<td>57</td>
<td>3,411,059</td>
<td>97</td>
</tr>
<tr>
<td>3,625,198</td>
<td>110</td>
<td>2,037,326</td>
<td>181</td>
</tr>
<tr>
<td>4,431,877</td>
<td>91</td>
<td>2,343,670</td>
<td>152</td>
</tr>
<tr>
<td>4,422,213</td>
<td>91</td>
<td>2,338,521</td>
<td>153</td>
</tr>
<tr>
<td>4,460,106</td>
<td>91</td>
<td>2,371,533</td>
<td>153</td>
</tr>
<tr>
<td>115,113,985</td>
<td>8</td>
<td>79,121,915</td>
<td>11</td>
</tr>
<tr>
<td>115,113,985</td>
<td>8</td>
<td>89,269,862</td>
<td>10</td>
</tr>
<tr>
<td>126,215,344</td>
<td>7</td>
<td>97,096,400</td>
<td>9</td>
</tr>
<tr>
<td>L100</td>
<td>N-count</td>
<td>Gaps</td>
<td>Mean</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>58,149</td>
<td>182,966,760</td>
<td>109,249</td>
<td>34,448</td>
</tr>
<tr>
<td>59,469</td>
<td>179,364,669</td>
<td>109,143</td>
<td>33,622</td>
</tr>
<tr>
<td>58,603</td>
<td>179,365,680</td>
<td>109,299</td>
<td>34,116</td>
</tr>
<tr>
<td>58,603</td>
<td>67,505,130</td>
<td>10,696</td>
<td>34,374</td>
</tr>
<tr>
<td>58,603</td>
<td>0</td>
<td>0</td>
<td>34,750</td>
</tr>
<tr>
<td>56,114</td>
<td>248,900</td>
<td>2,489</td>
<td>36,296</td>
</tr>
<tr>
<td>32,127</td>
<td>248,900</td>
<td>2,489</td>
<td>60,120</td>
</tr>
<tr>
<td>1,823</td>
<td>248,800</td>
<td>2,488</td>
<td>997,312</td>
</tr>
<tr>
<td>Tetra (C)</td>
<td>Tetra (C+P)</td>
<td>Tetra (S)</td>
<td>Tetra (D)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>85.5%</td>
<td>92.7%</td>
<td>84.6%</td>
<td>0.9%</td>
</tr>
<tr>
<td>85.5%</td>
<td>92.7%</td>
<td>84.6%</td>
<td>0.9%</td>
</tr>
<tr>
<td>85.5%</td>
<td>92.7%</td>
<td>84.6%</td>
<td>0.9%</td>
</tr>
<tr>
<td>88.0%</td>
<td>93.4%</td>
<td>87.1%</td>
<td>0.9%</td>
</tr>
<tr>
<td>88.8%</td>
<td>93.7%</td>
<td>87.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>88.9%</td>
<td>93.8%</td>
<td>88.1%</td>
<td>0.8%</td>
</tr>
<tr>
<td>88.7%</td>
<td>93.2%</td>
<td>88.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>88.3%</td>
<td>92.2%</td>
<td>87.6%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tetra (C)</th>
<th>Tetra (C+P)</th>
<th>Tetra (S)</th>
<th>Tetra (D)</th>
<th>Tetra (F)</th>
<th>Tetra (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.7%</td>
<td>85.4%</td>
<td>55.7%</td>
<td>27.0%</td>
<td>2.6%</td>
<td>14.7%</td>
</tr>
<tr>
<td>81.6%</td>
<td>86.9%</td>
<td>58.0%</td>
<td>23.6%</td>
<td>53.0%</td>
<td>13.1%</td>
</tr>
<tr>
<td>80.5%</td>
<td>83.8%</td>
<td>68.2%</td>
<td>12.3%</td>
<td>3.4%</td>
<td>16.1%</td>
</tr>
<tr>
<td>57.5%</td>
<td>76.3%</td>
<td>56.9%</td>
<td>0.6%</td>
<td>18.8%</td>
<td>23.7%</td>
</tr>
</tbody>
</table>
Supplemental Table 2: Comparative Lepidsaur genome information.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Clade</th>
<th>Scaffold N50 (Mb)</th>
<th>Scaffold L50</th>
</tr>
</thead>
<tbody>
<tr>
<td>King cobra</td>
<td>Elapidae</td>
<td>0.24</td>
<td>1,750</td>
</tr>
<tr>
<td>Eastern garter snake</td>
<td>Colubridae</td>
<td>0.65</td>
<td>639</td>
</tr>
<tr>
<td>Leopard gecko</td>
<td>Eublepharidae</td>
<td>0.66</td>
<td>796</td>
</tr>
<tr>
<td>Schlegel's Japanese gecko</td>
<td>Gekkonidae</td>
<td>0.68</td>
<td>963</td>
</tr>
<tr>
<td>Glass lizard</td>
<td>Anguidae</td>
<td>1.3</td>
<td>408</td>
</tr>
<tr>
<td>Shaw's Sea Snake</td>
<td>Elapidae</td>
<td>1.4</td>
<td>353</td>
</tr>
<tr>
<td>Chinese crocodile lizard</td>
<td>Shinisauridae</td>
<td>1.5</td>
<td>385</td>
</tr>
<tr>
<td>Five-pace viper</td>
<td>Viperidae</td>
<td>2.1</td>
<td>199</td>
</tr>
<tr>
<td>Central bearded dragon</td>
<td>Agamidae</td>
<td>2.3</td>
<td>219</td>
</tr>
<tr>
<td>Tuatara</td>
<td>Sphenodontidae</td>
<td>3.0</td>
<td>370</td>
</tr>
<tr>
<td>Madagascar ground gecko</td>
<td>Gekkonidae</td>
<td>4.1</td>
<td>93</td>
</tr>
<tr>
<td>Boa constrictor</td>
<td>Boidae</td>
<td>4.5</td>
<td>90</td>
</tr>
<tr>
<td>Eastern Brown Snake</td>
<td>Elapidae</td>
<td>14.7</td>
<td>31</td>
</tr>
<tr>
<td>Komodo dragon</td>
<td>Varanidae</td>
<td>23.8</td>
<td>17</td>
</tr>
<tr>
<td>European wall lizard</td>
<td>Lacertidae</td>
<td>92.4</td>
<td>7</td>
</tr>
<tr>
<td>Madagascar ground gecko</td>
<td>Gekkonidae</td>
<td>109.0</td>
<td>6</td>
</tr>
<tr>
<td>Townsend's dwarf gecko</td>
<td>Sphaerodactylidae</td>
<td>134.0</td>
<td>6</td>
</tr>
<tr>
<td>Green anole</td>
<td>Iguanidae</td>
<td>151.0</td>
<td>5</td>
</tr>
<tr>
<td>Brown anole</td>
<td>Iguanidae</td>
<td>253.6</td>
<td>4</td>
</tr>
<tr>
<td>Burmese python</td>
<td>Pythonidae</td>
<td>196.0</td>
<td>3</td>
</tr>
<tr>
<td>Prairie rattlesnake</td>
<td>Viperidae</td>
<td>197.9</td>
<td>3</td>
</tr>
<tr>
<td>Indian cobra</td>
<td>Elapidae</td>
<td>224.1</td>
<td>3</td>
</tr>
<tr>
<td>Desert horned lizard</td>
<td>Phrynosomatidae</td>
<td>273.2</td>
<td>3</td>
</tr>
<tr>
<td>Eastern Fence Lizard</td>
<td>Phrynosomatidae</td>
<td>275.0</td>
<td>3</td>
</tr>
<tr>
<td>Chinese crocodile lizard</td>
<td>Shinisauridae</td>
<td>297.0</td>
<td>4</td>
</tr>
<tr>
<td>Argentine black and white tegu</td>
<td>Teiidae</td>
<td>314.2</td>
<td>3</td>
</tr>
</tbody>
</table>
Supplemental Table 2: Comparative Lepidosaur genome information.

<table>
<thead>
<tr>
<th>Total Scaffolds</th>
<th>Reference</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>296,399</td>
<td>Vonk et al. 2013</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>7,930</td>
<td>Perry et al. 2018</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>206,400</td>
<td>Xiong et al. 2016</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>191,500</td>
<td>Liu et al. 2015</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>6,715</td>
<td>Song et al. 2015</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>3,139</td>
<td>Peng et al. 2020</td>
<td>Illumina, PacBio</td>
</tr>
<tr>
<td>1,257,129</td>
<td>Gao et al. 2017</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>162,571</td>
<td>Yin et al. 2016</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>545,310</td>
<td>Georges et al. 2015</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>16,536</td>
<td>Gemmell et al. 2020</td>
<td>Illumina, mate pairs, Chicago</td>
</tr>
<tr>
<td>110,900</td>
<td>Hara et al. 2018</td>
<td>Illumina, mate pairs</td>
</tr>
<tr>
<td>19,927</td>
<td>Card et al. 2019</td>
<td>Illumina-only</td>
</tr>
<tr>
<td>28,550</td>
<td>University of New South Wales</td>
<td>10X</td>
</tr>
<tr>
<td>1,411</td>
<td>Lind et al. 2019</td>
<td>10X, ONT, PacBio, HiC</td>
</tr>
<tr>
<td>2,160</td>
<td>Andrade et al. 2019</td>
<td>Illumina, PacBio, HiC, Chicago</td>
</tr>
<tr>
<td>4,877</td>
<td>Yamaguchi et al. 2021</td>
<td>Illumina, mate pairs, HiC</td>
</tr>
<tr>
<td>1,823</td>
<td>Pinto et al. 2021 (MPM_Stown_v2.2)</td>
<td>10X, ONT, Illumina, HiC</td>
</tr>
<tr>
<td>6,457</td>
<td>Alfoldi et al. 2011</td>
<td>Sanger, physical mapped</td>
</tr>
<tr>
<td>3,738</td>
<td>Geneva et al. 2021</td>
<td>Illumina, PacBio, HiC, Chicago</td>
</tr>
<tr>
<td>29,190</td>
<td>Castoe et al. 2013</td>
<td>Illumina, HiC (DNAZoo)</td>
</tr>
<tr>
<td>7,043</td>
<td>Schield et al. 2019</td>
<td>Illumina, mate pairs, HiC, Chicago</td>
</tr>
<tr>
<td>1,897</td>
<td>Suryamohan et al. 2020</td>
<td>Everything</td>
</tr>
<tr>
<td>5,291</td>
<td>Koochekian et al. 2022</td>
<td>Illumina, Chicago, Hi-C</td>
</tr>
<tr>
<td>24</td>
<td>Westfall et al. 2021</td>
<td>10X, PacBio, HiC</td>
</tr>
<tr>
<td>1,553</td>
<td>Xie et al. 2022</td>
<td>PacBio, 10X, HiC</td>
</tr>
<tr>
<td>4,375</td>
<td>Roscito et al. 2018</td>
<td>Illumina, PacBio, OM, HiC (DNAZoo)</td>
</tr>
</tbody>
</table>
Assembly Link

http://dx.doi.org/10.5524/100246
https://www.ncbi.nlm.nih.gov/assembly/GCF_001447785.1
http://dx.doi.org/10.5524/100119
https://doi.org/10.6084/m9.figshare.11391606.v5
http://dx.doi.org/10.5524/100315
http://dx.doi.org/10.5524/100196
https://useast.ensembl.org/Pogona_vitticeps/Info/Index
https://useast.ensembl.org/Sphenodon_punctatus/Info/Index
https://doi.org/10.6084/m9.figshare.6220406.v1
http://darencard.net/boaCon/
https://useast.ensembl.org/Varanus_komodoensis/Info/Index
https://useast.ensembl.org/Podarcis_muralis/Info/Index
https://www.ncbi.nlm.nih.gov/assembly/GCA_021028975.1
https://useast.ensembl.org/Anolis_carolinensis/Info/Index
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/TTKBFU
https://www.dnazoo.org/assemblies/Python_bivittatus
https://www.ncbi.nlm.nih.gov/assembly/GCA_003400415.2
https://www.ncbi.nlm.nih.gov/assembly/GCA_020142125.1
https://www.ncbi.nlm.nih.gov/genome?LinkName=nuccore_genome&from_uid=2064852242
https://www.ncbi.nlm.nih.gov/assembly/GCA_021292165.1
https://www.dnazoo.org/assemblies/Salvator_merianae
<table>
<thead>
<tr>
<th>Species</th>
<th>Individual</th>
<th>Sex</th>
<th>Experiment</th>
<th>Tissue</th>
<th>Bioproject</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. townsendi</td>
<td>TG3544</td>
<td>M</td>
<td>10X</td>
<td>Blood/liver</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3544</td>
<td>M</td>
<td>ONT</td>
<td>Blood/liver</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3544</td>
<td>M</td>
<td>DNAseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3718</td>
<td>M</td>
<td>HiC</td>
<td>Blood/liver</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3828</td>
<td>F</td>
<td>DNAseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3715</td>
<td>Unknown</td>
<td>RNAseq</td>
<td>Embryo</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3467</td>
<td>M</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. inigo</td>
<td>TG2751</td>
<td>M</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. inigo</td>
<td>TG2752</td>
<td>M</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. inigo</td>
<td>TG2754</td>
<td>F</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. inigo</td>
<td>TG2755</td>
<td>F</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. macrolepis</td>
<td>TG2721</td>
<td>M</td>
<td>DNAseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. macrolepis</td>
<td>TG2743</td>
<td>M</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. macrolepis</td>
<td>TG2745</td>
<td>F</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. macrolepis</td>
<td>TG2746</td>
<td>F</td>
<td>RNAseq</td>
<td>Head</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2020</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2024</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2025</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2026</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2028</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3108</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3869</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3870</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2021</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2023</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG2059</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3101</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3110</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. townsendi</td>
<td>TG3133</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG1995</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG2003</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG2096</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG2100</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG3212</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG3213</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG2102</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG2115</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>Species</td>
<td>Sample ID</td>
<td>Sex</td>
<td>Method</td>
<td>Tissue</td>
<td>Accession</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG2666</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG2672</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG3214</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. nicholsi</td>
<td>TG3216</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3777</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3778</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3818</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3820</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3821</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG4158</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG4160</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3779</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3780</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3781</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3819</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG4159</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3816</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. notatus</td>
<td>TG3817</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2147</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>PRJNA746057</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2050</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG1950</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2046</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG1971</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2145</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2018</td>
<td>M</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2148</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG1929</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2146</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG1979</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG1980</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2047</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG1981</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2048</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
<tr>
<td>S. inigoi</td>
<td>TG2049</td>
<td>F</td>
<td>RADseq</td>
<td>Tail</td>
<td>Gamble et al. 2015</td>
</tr>
</tbody>
</table>
SRA Accession

SAMN20179316
SAMN20179317
SAMN20179318
SAMN20179319
SAMN20179320
SAMN20179321
SAMN20179322
SAMN20179331
SAMN20179323
SAMN20179324
SAMN20179325
SAMN20179326
SAMN20179327
SAMN20179328
SAMN20179329
SAMN20179330
SAMN20179332
SAMN20179333
SAMN20179334
SAMN20179335
SAMN20179336
SAMN20179337
SAMN20179338
SAMN20179339
SAMN20179340
SAMN20179341
SAMN20179342
SAMN20179343
SAMN20179344
SAMN20179345
SAMN20179346
SAMN20179347
SAMN20179348
SAMN20179349
SAMN20179350
SAMN20179351
SAMN20179352
SAMN20179353
SAMN20179354
SAMN20179355
SAMN20179356
SAMN20179320